Skip to content
  • There are no suggestions because the search field is empty.

Azure Synapse - Target environment

This article proposes a possible target environment on Azure Synapse for Microsoft Fabric generators.

Installation and configuration of the target environment are not part of biGENIUS support.

Unfortunately, we won't be able to provide any help beyond this example in this article.

Many other configurations and installations are possible for a Spark target environment.

Below is a possible target environment setup on Azure Synapse for a Microsoft Fabric generator.

The Property Target Platform should be set to the Azure Synapse value:

Setup environment

The Azure Synapse target environment needs at least the following Azure resources set in your Azure Subscription:

  • A Ressource Group: some help is available here
  • Inside the Ressource Group:
    • 2 Storage Accounts: some help is available here
      • 1 for the Source data (if you have files as source data)
      • 1 for the Target Data Lake
    • An Apache Spark Pool: some help is available here
    • A Synapse Workspace: some help is available here

In the following example of the target environment, we will use the following resources:

  • A Ressource Group named bg-synapse
  • A Storage Account for our Source Data named bgsynapselandingzone1
  • A Storage Account for our Target Data Lake named bgsynapsedatalake1
  • An Apache Spark Pool named bgaasspark33v2
  • A Synapse Workspace named bgsynapseworkspace1

Tools to install

Please install the following tools:

  • Azure Storage Explorer: available here

Target Storage Account

We have chosen to create a folder named docu-datalake in our Target Storage Account:

  • Open Azure Storage Explorer
  • Connect to your Subscription
  • Open the Target Storage Account
  • Create a folder 

For this example, we have 1 Target folder for our Data Lake:

Source Data

There are three ways to provide source data to a Microsoft Fabric generator on Azure Synapse:

  • From Parquet and Delta files that exist in a One Lake Catalog by using a direct Discovery
  • From Parquet and Delta files by using the Microsoft Fabric Stage Files generator as a Linked Project
  • From any database accessed through JDBC by using the Microsoft Fabric Stage JDBC generator as a Linked Project

Parquet and Delta Files

If your source data are stored in Parquet or Delta files, please:

  • Create a first Project with the Microsoft Fabric Stage Files generator
  • In this first Project, discover the Parquet and the Delta files, create the Stage Model Object, generate, deploy, and load data in a Lake House.
  • Create a second Project with the Microsoft Fabric Data Vault or DataVault and Mart generators.
  • In this second Project, use the first Project Stage Model Object as a source by using the Linked Project feature.

 

You must upload the source Parquet and/or Delta files to the Source Storage Account:

  • Open Azure Storage Explorer
  • Connect to your Subscription
  • Open the Source Storage Account
  • Create one folder by Parquet Source file

The folder name should be identical to the Parquet file name but in uppercase.

For this example, we have 6 Parquet source files, so we need six folders:

Upload in each folder the corresponding Parquet Source file, for example, for the CreditCard folder:

Database

If your source data are stored in a database such as Microsoft SQL Server or Postgres (or any database you can access through JDBC), please:

  • Create a first Project with the Microsoft Fabric Stage JDBC generator
  • In this first Project, discover the database tables, create the Stage Model Object, generate, deploy, and load data in a Lake House.
  • Create a second Project with the Microsoft Fabric Data Vault or Microsoft Fabric DataVault and Mart generator
  • In this second Project, use the first Project Stage Model Object as a source by using the Linked Project feature.

 

The source data are coming from a JDBC source.

In this example, we will use a Microsoft SQL Server database stored in Azure in a dedicated resource group:

The Azure database is AdventureWorks2019 and contains the data from the SQL Server sample database AdventureWorks2019.

To be able to access the Microsoft SQL Server from Azure Synapse, you should check the box Allow Azure services and resources to access this server in the Server Networking configuration:

Upload Artifacts in Azure Synapse

Please now upload the generated Artifacts from the biGENIUS-X application to the Azure Synapse Workspace.

Please replace the placeholders before uploading the artifacts.

  • Click on the Synapse Workspace in Azure:
  • Then click on the Workspace web URL:
  • Azure Synapse Analytics is opened:
  • Click on the Develop menu on the left-hand-side:
  • If you are in the live mode of Synapse, change it to the Azure DevOps Git mode:
  • Create a new branch named demo_synapse:

  • We have chosen to create a folder named Artifacts:

In the file 500_Deploy_and_Load_DataVault_Fabric.ipynb, adapt the name of the XXX_Deployment.ipynb, the XXX_SimpleLoadexecution.ipynb, the XXX_MultithreadingLoadExecution.ipynb, and the XXX_SelectResults.ipynb by the name of your Helper files.

  • Commit all in the demo_synapse branch:
  • Make a pull request from your branch demo_synapse to the collaboration branch:
  • Open the collaboration branch and click on the Publish button:

If you have already discovered your source data, modeled your project, and generated the artifacts, you're now ready to replace the placeholders in your generated artifacts, deploy these artifacts, and subsequently load the data based on the Generator you are using with the following possible load controls: